

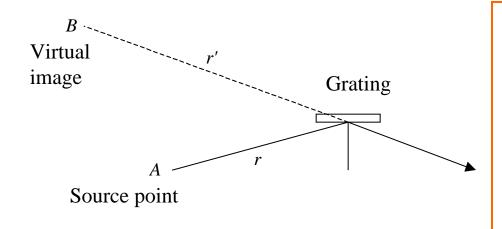
DIFFRACTION GRATING MONOCHROMATORS

(PGMs)

Malcolm R. Howells

Advanced Light Source

PLANE GRATING SYSTEMS: GENERAL



Eliminating α between

$$\frac{m\lambda}{d_0} = \sin\alpha + \sin\beta$$
 and $c_{\rm ff} = \frac{\cos\beta}{\cos\alpha}$

$$\sin \beta = \frac{\frac{m\lambda}{d} - \sqrt{\frac{m\lambda}{d} \frac{2}{c_{\text{ff}}^2} + 1 - \frac{1}{c_{\text{ff}}^2}}}{1 - \frac{1}{c_{\text{ff}}^2}}$$

Focus condition for a spherical grating

$$\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R} + \frac{\cos^2 \beta}{r} - \frac{\cos \beta}{R} = 0 \qquad \text{let } R \qquad \qquad r = -r \frac{\cos^2 \beta}{\cos^2 \alpha}$$

$$r = -r \frac{\cos^2 \beta}{\cos^2 \alpha}$$

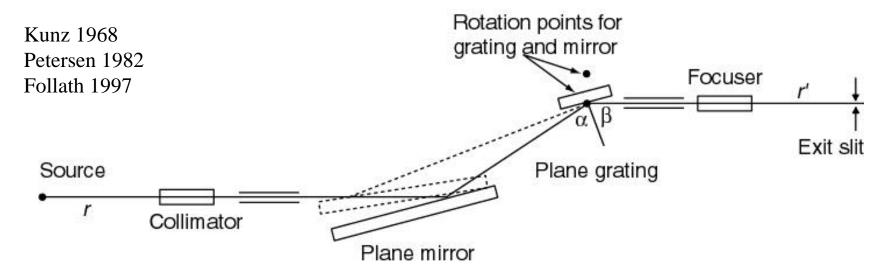
Note that if r =then r = irrespective of $c_{\rm ff}$ i.e. the grating then does no focusing

Using
$$c_{\rm ff} = \frac{\cos \beta}{\cos \alpha}$$
 and recalling that $M = -\frac{r}{r} \frac{\cos \alpha}{\cos \beta}$

$$M = c_{\rm ff}$$

(of the grating alone)

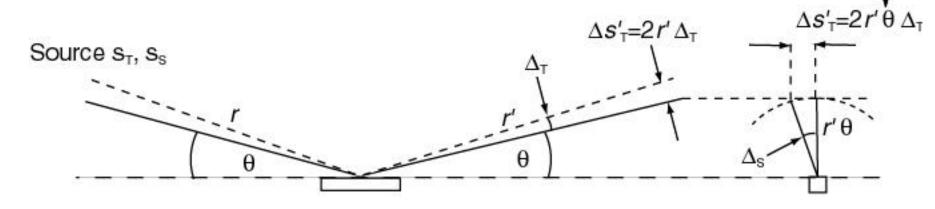
COLLIMATED LIGHT SX700 (CLSX700)



- This is the current and deservedly the most popular of many versions (used in ALS MES project)
- The original (Petersen) held fixed focus by maintaining $c_{\rm ff} = \cos \beta / \cos \alpha = 2.25$ and introduced the still-essential mechanism for positioning the plane mirror (next slide)
- CLSX700 has constant focus position *irrespective* of the value of $c_{\rm ff}$ which therefore becomes a user-controlled variable
- This can be used to track the efficiency maximum, suppress high orders or maximize resolution
- Sagittal focusing mirrors reduce sensitivity to manufacturing errors (Jark 1992) see next slide, other types were paraboloid (Kunz 1968), ellipsoid (Petersen 1982), elliptical cylinder (Nyholm 1985) or sphere (Padmore 1989)

FORGIVENESS FACTOR

TANGENTIAL-PLANE DIAGRAM



slope errors Δ_T , Δ_S

Requirement:
$$\Delta s_{\rm T} = \frac{1}{2} s_{\rm T}$$

$$2r \Delta_{\rm T} = \frac{1}{2} \frac{r}{r} s_{\rm T}$$

$$\Delta_{\rm T} = \frac{1}{4} \frac{\rm s_{\rm T}}{r}$$

$$\Delta s_{\rm S} = \frac{1}{2} s_{\rm S}$$

$$2r \theta \Delta_{\rm S} = \frac{1}{2} \frac{r}{r} s_{\rm S}$$

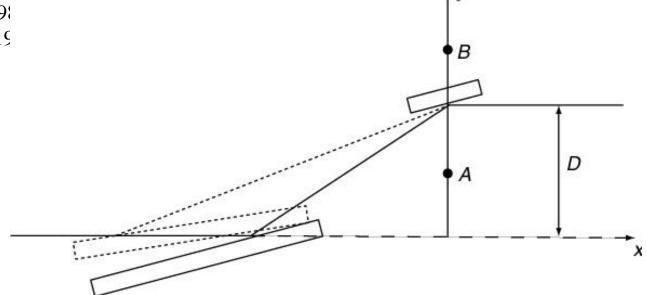
$$\Delta_{\rm S} = \frac{1}{4} \frac{\rm s_{\rm S}}{r\theta}$$

Reasons for the factor 2's:

- 1. Ray deviation is twice that of the mirror
- 2. Quadratic sum of σ and $\sigma/2$ is 1.1 σ implying a 10% error which we declare acceptable

THE ZEISS MIRROR MECHANISM

- Reimer 193
- Pimpale 19



- This mechanism, patented by BESSY and Zeiss, is a major reason for the success of this design
- The idea is to find a point about which to rotate the mirror such that the central ray always hits the grating pole this can be done with only a few microns error
- The easy and less accurate solution is continue the mirror surfaces at maximum and minimum angle to intersect the y axis and take the average of the two points this will be near A(0, D/2) for small angles
- More accurate solutions (Pimpale 1991) are close to B (0, 3D/2) best solutions are good within 10 μ m if D 8 cm and the grazing angle is less than 10° B itself is a good solution to within 10 μ m if D 3 cm and the grazing angle is less than 10°

SOME WORKING CURVES FOR PGM'S

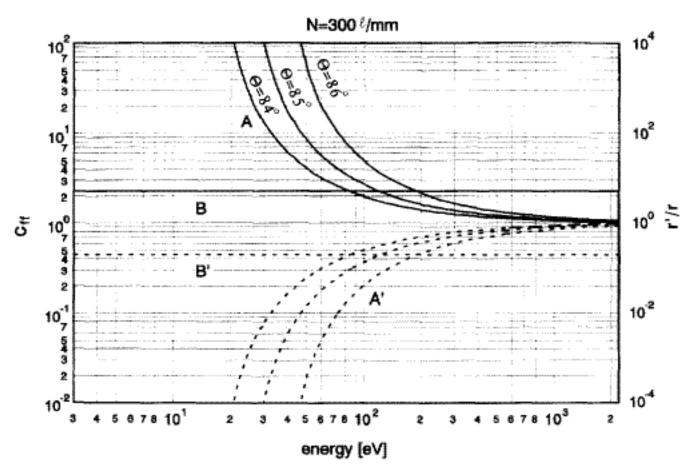
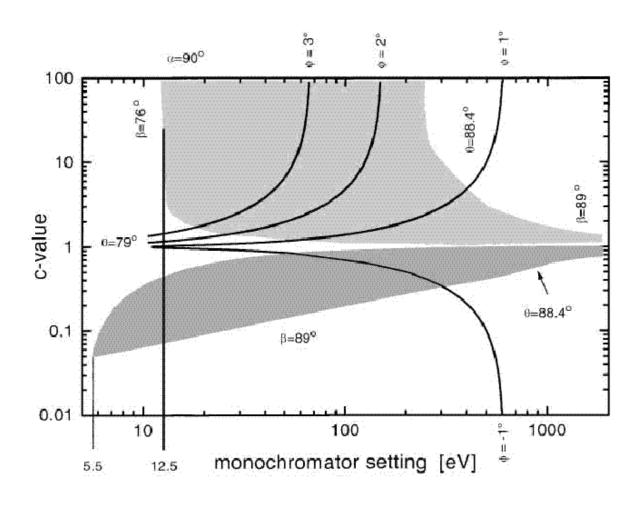


Fig. 1. Working curves for plane-grating monochromators with 300 lines/mm: (A) grating rotation at constant deviation $|\alpha| + |\beta| = 2\Theta$ = constant in inside diffraction order; (A') the same but outside diffraction order; (B) fix-focus mode, $c_{\text{ff}} = 2.25$; (B') fix-focus mode, $c_{\text{ff}} = 1/2.25$.

ACCESSIBLE RANGES OF THE SCAN PARAMETERS



- 300/mm grating
- $79^{\circ} < \theta < 88.4^{\circ}$
- $-89^{\circ} < \beta < -76^{\circ}$

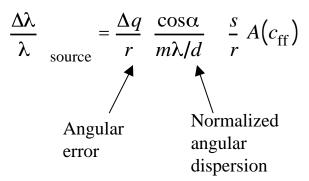
CONTRIBUTIONS TO THE SX700 RESOLUTION

Follath 1997, 2001

$$\frac{m\lambda}{d} = \sin\alpha + \sin\beta \text{ so } \frac{\partial\lambda}{\partial\alpha} = \frac{d\cos\alpha}{m}$$

$$\frac{d\lambda}{dq} = \frac{d\lambda}{d\beta} \frac{d\beta}{dq} = \frac{d\cos\alpha}{mr}$$

Fractional bandwidth due to the entrance slit is



In the small - angle approximation

$$A(c_{\rm ff}) \sqrt{\frac{d}{m\lambda} \frac{2}{\left(c_{\rm ff}^2 - 1\right)}}$$

NB - the grating changes the angular spread by $1/c_{\rm ff}$ ($c_{\rm ff}$ is the magnification)

$$\frac{\Delta \lambda}{\lambda} \sum_{\text{source}} = \frac{s}{r} A(c_{\text{ff}})$$

$$\frac{\Delta \lambda}{\lambda} \sum_{\substack{\text{exit} \\ \text{slit}}} = \frac{s}{r} c_{\text{ff}} A(c_{\text{ff}})$$

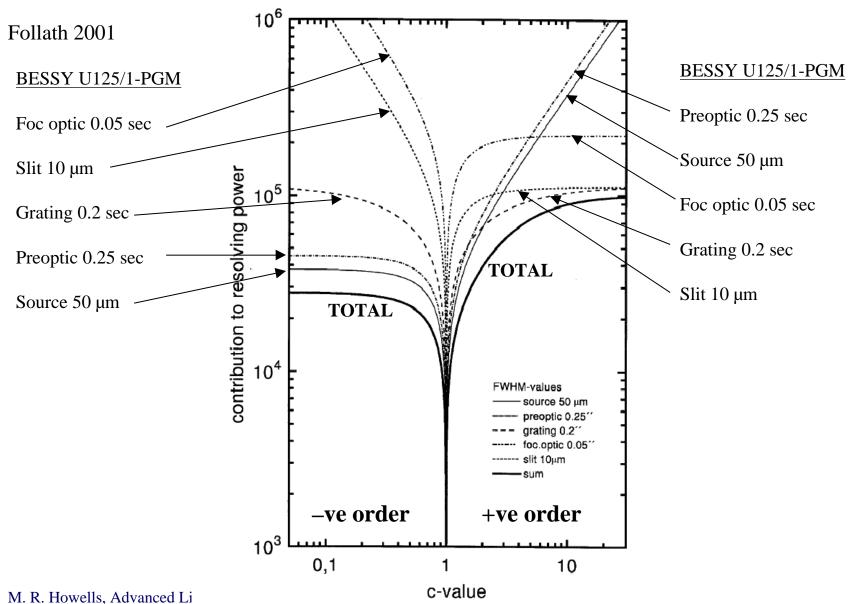
$$\frac{\Delta \lambda}{\lambda} \sum_{\substack{\text{aberr}}} = \frac{\Delta y}{r} c_{\text{ff}} A(c_{\text{ff}})$$

$$\frac{\Delta \lambda}{\lambda} \sum_{\substack{\text{preopt}}} = \sigma_{\text{po}} A(c_{\text{ff}})$$

$$\frac{\Delta \lambda}{\lambda}$$
 grating = $\sigma_{\rm gr} \left(1 + c_{\rm ff} \right) A(c_{\rm ff})$

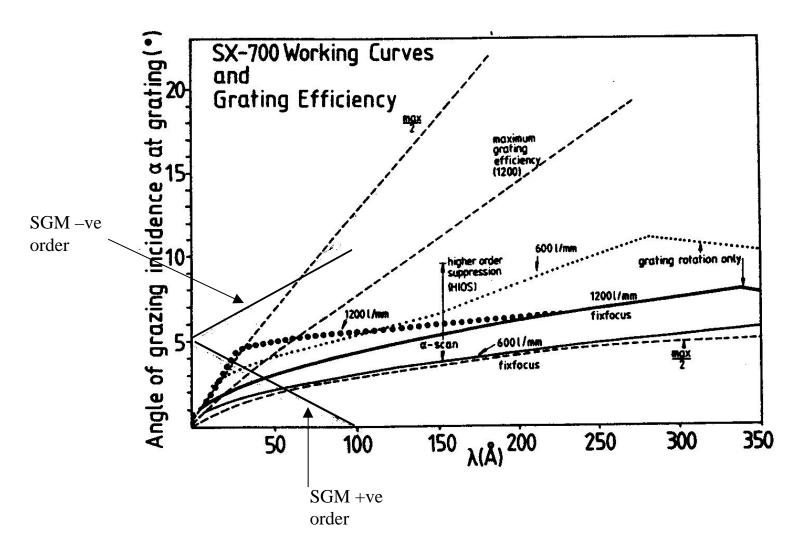
$$\frac{\Delta \lambda}{\lambda}_{\text{total}} = \sqrt{\frac{\Delta \lambda}{\lambda}_{i}^{2}} = \frac{1}{R}$$

RESOLUTION CONTRIBUTIONS FOR A BESSY PGM



WORKING CURVES FOR $c_{\rm ff}$ =2.25 ETC

Petersen 1986



BESSY CLSX700'S: SUMMARY

Table I Operational collimated plane grating monochromators at BESSY II

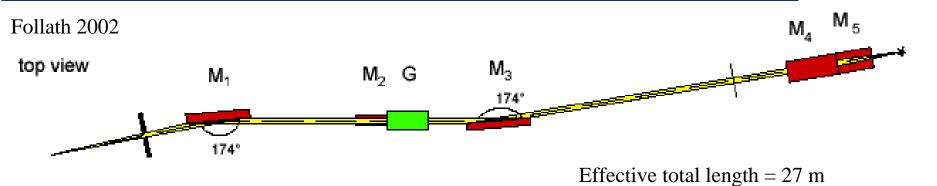
Beamline	Energy range (eV)	Resolving power	Dedication
U125/1-PGM	15-600	100.000 ^a	low energy beamline
UE56/1-PGM	60-1500	100.000 ^a	circularly polarised, two chopped beams
UE56/2-PGM1	35	110.000 ^a	,,
UE56/2-PGM2	**	110.000 ^a	**
U41-PGM	170-2000	6.000 ^b	high energy, high flux, small focus
U49/1-PGM	130-2000	10.000 ^b	PEEM
U49/2-PGM2	80-2000	10.000 ^b	PEEM
U180-PGM	30-1900°	30.000 ^a	reflectometry, high spectral purity

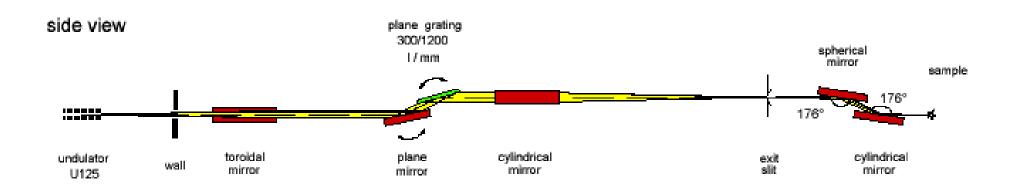
^aAligned and determined with helium (2 - 1₃)-profile.

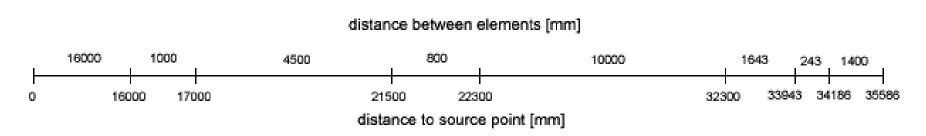
bAligned and determined with N₂: 1s → π* core hole absorption.

^cWiggler mode of the insertion device.

BESSY U125/1-PGM BEAM LINE



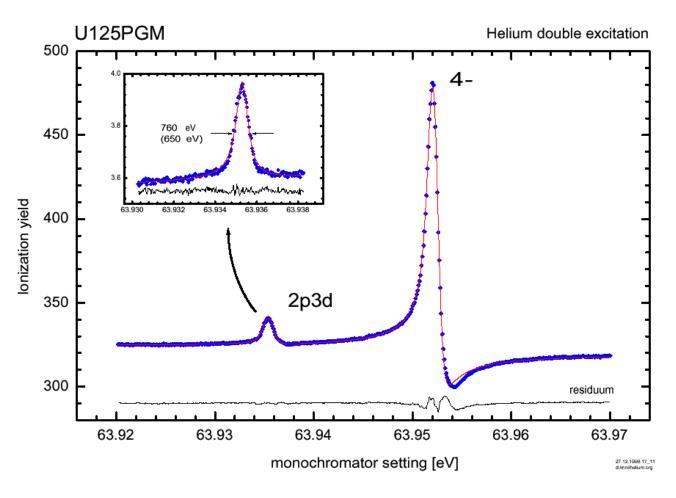




M. R. Howells, Advanced Light Source

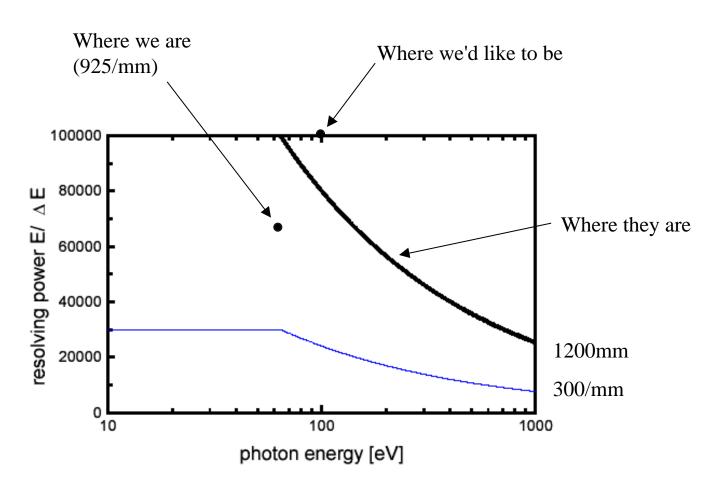
BESSY PGM RESOLUTION DEMONSTRATION

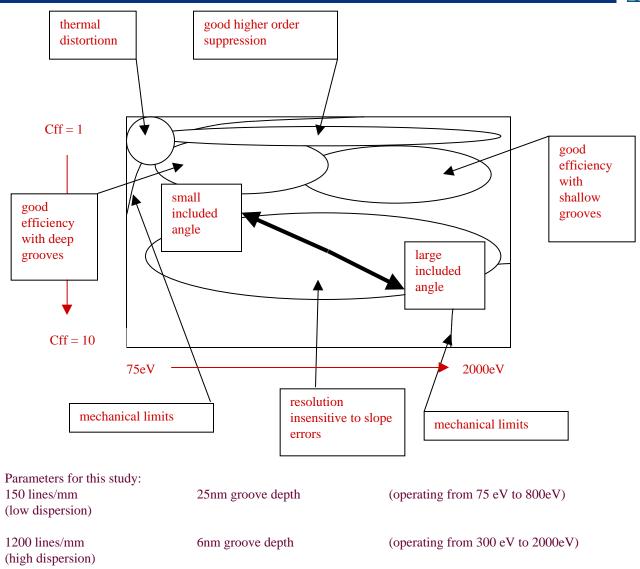
Picture from R. Follath, BESSY



- Doppler width 0.4 meV
- Monochromator contribution 0.65 meV
- Resolving power=1.0x10⁵
- Rotation increments
 - grating: 17 nrad
 - mirror: 9 nrad
- Measured with 1200/mm grating at $c_{\rm ff}$ =10 to 12

BESSY PGM'S: RESOLUTION SUMMARY





OPTICAL PATH FUNCTION: VARIED-LINE-SPACING GRATINGS

Now the groove spacing d(w) and number n(w) are functions of w and are also expressed as power series

$$d(w) = d_0 \left(1 + v_1 w + v_2 w^2 + \dots \right) \qquad n(w) = n_{i=1} n_{i00} w^i$$

So the optical path function becomes

$$F = C_{ijk}(\alpha, r)w^{i}l^{j}z^{k} + C_{ijk}(\beta, r)w^{i}l^{j}z^{k} + \frac{m\lambda}{d_{0}}n_{ijk}$$

$$n_{100} = 1$$

$$n_{200} = -v_{1}/2$$

$$n_{300} = \left(v_{1}^{2} - v_{2}\right)/3$$

$$n_{400} = \left(-v_{1}^{3} + 2v_{1}v_{2} - v_{3}\right)/4$$

$$n_{ijk} = 0 \text{ if } i \text{ or } k = 0$$

Evidently the use of VLS can benefit aberrations of the form i00:

Defocus, coma, spherical aberration but not ones with j, k = 0

WHY DO VLS GRATINGS WORK?

The spherical - grating focus condition is now:

$$(F)_{200} = \frac{1}{2}w^2 \frac{\cos^2\alpha}{r} - \frac{\cos\alpha}{R} + \frac{\cos^2\beta}{r} - \frac{\cos\beta}{R} - \frac{v_1m\lambda}{d_0} = 0$$

So setting R = a, using the grating equation and switching to grazing angles a, b

$$\frac{1}{r} = \frac{\cos a - \cos b}{\sin^2 b} - \frac{1}{r} \frac{\sin^2 a}{\sin^2 b} = \frac{1}{r} v_1 r - \frac{2\sin \frac{a+b}{2} \sin \frac{a-b}{2}}{\sin^2 b} - \frac{\sin^2 a}{\sin^2 b}$$

Now approximating $\sin a$ a etc

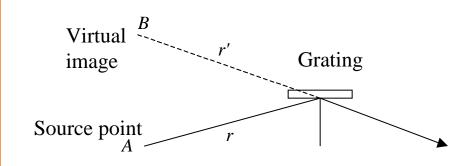
$$\frac{1}{r} = \frac{1}{r} - v_1 r \frac{a^2 - b^2}{2b^2} - \frac{a^2}{b^2}$$

Evidently if $v_1 = \frac{-2}{r}$ then r = -r

IDENTICALLY (for all values of a, b and thus λ . Moreover if, in addition,

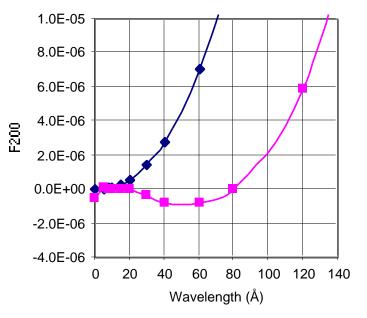
$$v_2 = \frac{1}{r^2}$$
 then coma and sperical aberration

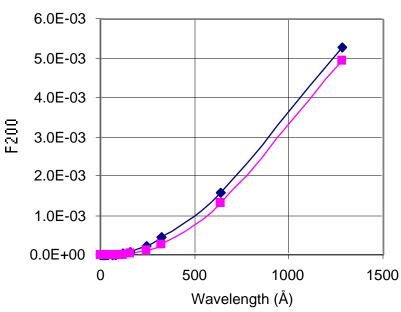
are corrected as well under the same small - angle assumption



This works equally well in converging or diverging light (principle of reversibility) although the literature discusses only converging.

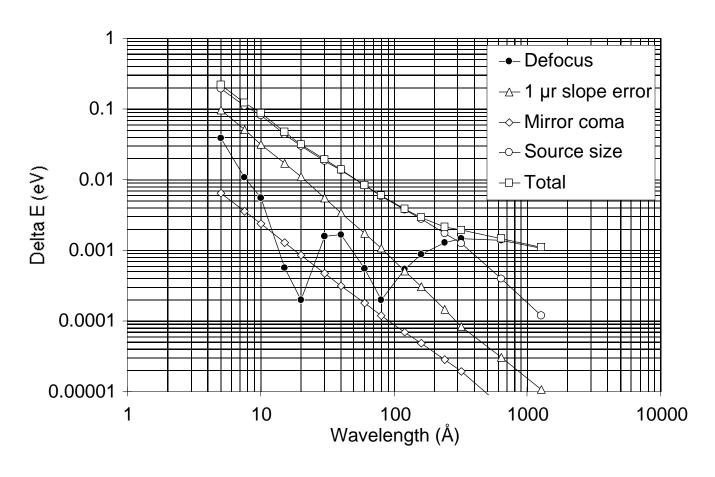
DOES $v_1 = -r/2$, r' = -r GIVE OPTIMUM FOCUSING?



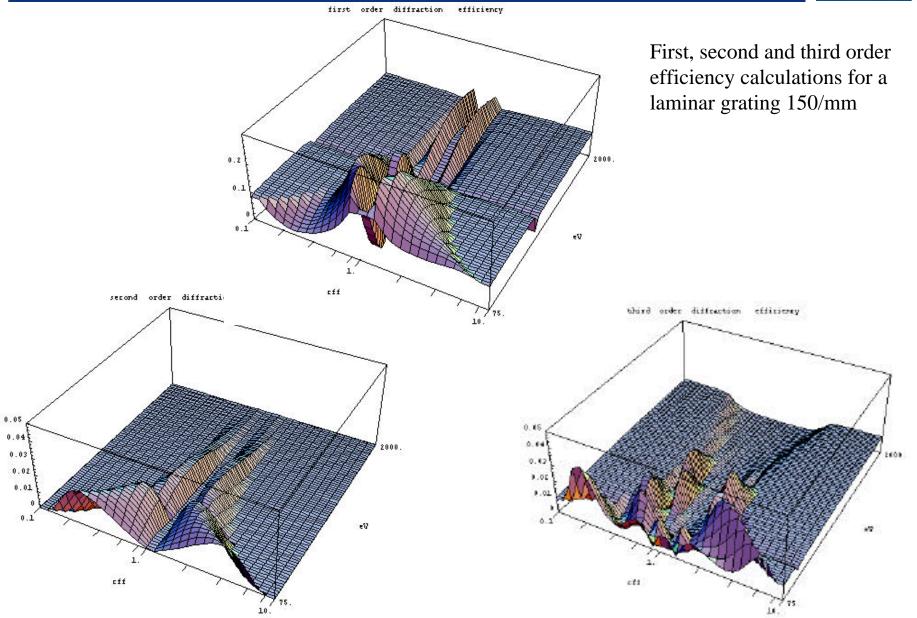


- No the usual procedure is to write the focus equation twice for two wavelengths of exact focus and solve for r' and v_1 (this requires a fixed included angle or at least a fixed focusing principle) the nominal focal distance then changes by a small amount (2% in the above case) this gives locally better focus although not much improvement over a large range
- Note that all of the design studies in the literature except one (Koike 1995) consider only *fixed-included-angle* cases and offer, sometimes very good, although still approximate solutions but they have SGM-like disadvantages.
- Now that the variable-included angle schemes are available we have *exact* focus solutions such as CLSX700 or classical SX700 although the latter does not give control of the included angle to the user.
- Therefore retrofitting VLS to a standard SX700 makes some sense to give user control of the included angle however note that the focal length or the focal distance of the mirror would have to change.
- Conclusion: VLS role in general-purpose monochromators is becoming minor but it is still strong in spectrographs.
 M. R. Howells, Advanced Light Source

VLS RETROFIT TO AN SX700

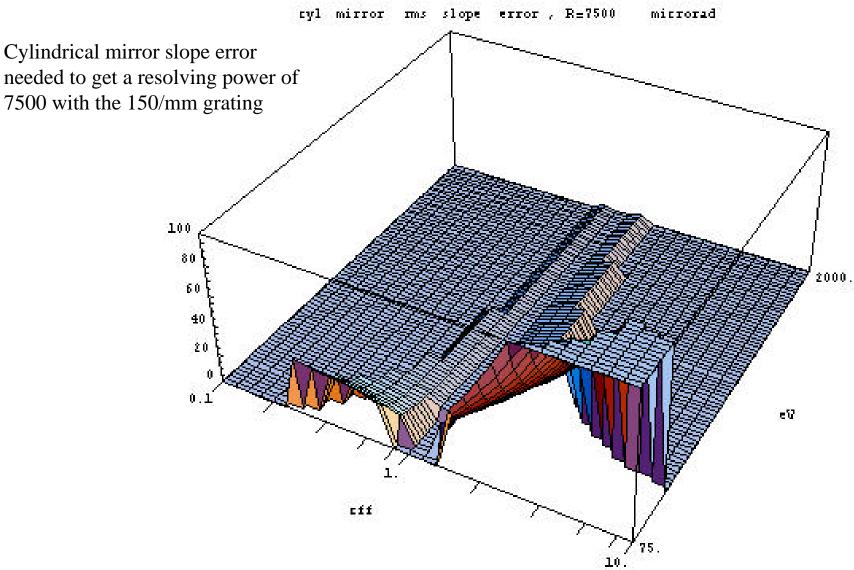


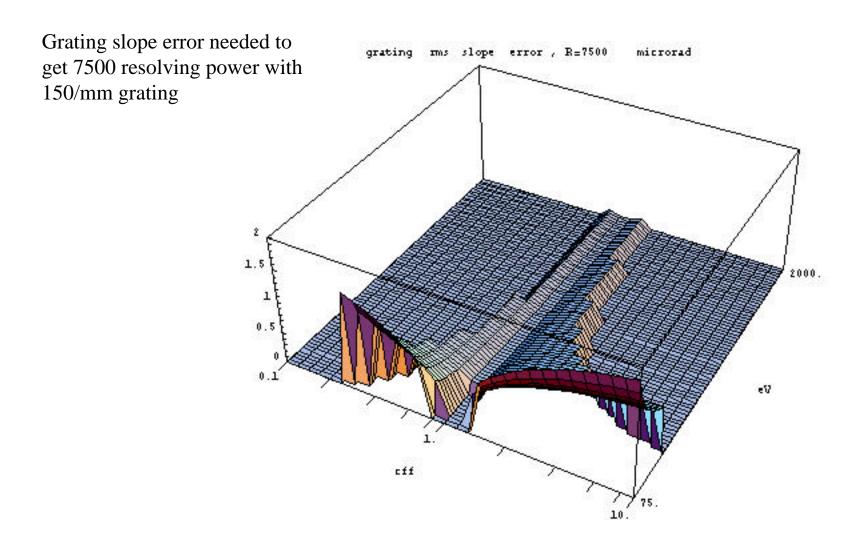
- VLS solution with $c_{\rm ff}$ chosen for maximum efficiency (between 1.5 and 2.5)
- Wavelengths of exact focus: 20 Å and 80 Å
- Source: size 50 µm and distance 15 m
- Beam height: 2mm
- Inside (+ve) order
- 1200/mm



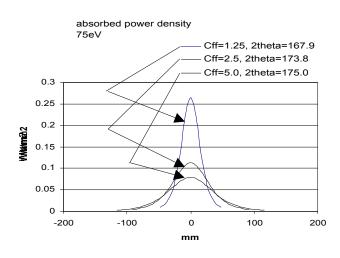
Source-size-limited resolving power for a source of size FWHM = $40 \mu m$ at distance 12 m with a 150/mm grating

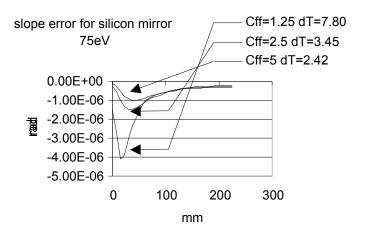


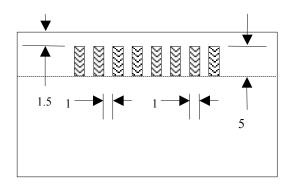




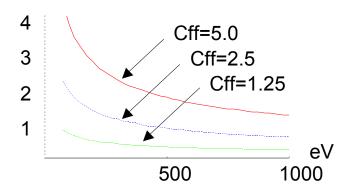
Mirror cooling for high heat load at low energy (75eV)







The rms slope error (µrad) of the premirror corresponding to a resolving power R=7500 (FWHM) from the 150l/mm grating.



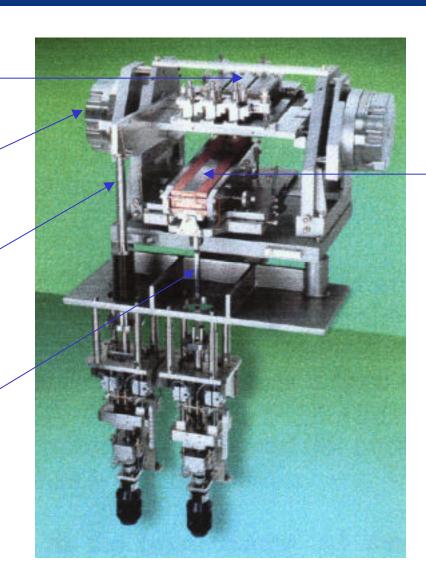
JENOPTIC SX700 MONOCHROMATOR

Three gratings

UHV rotary encoder

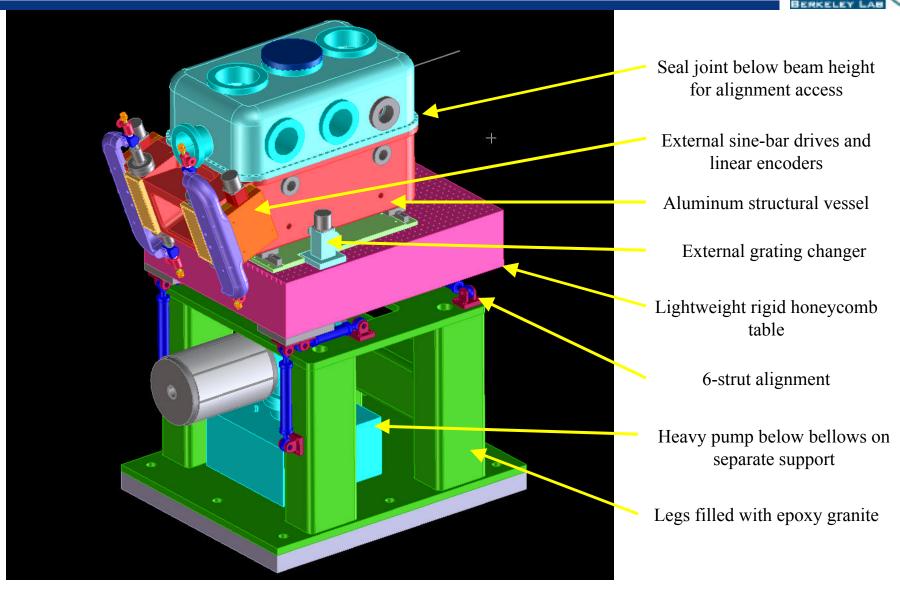
Grating drive arm

Mirror drive arm



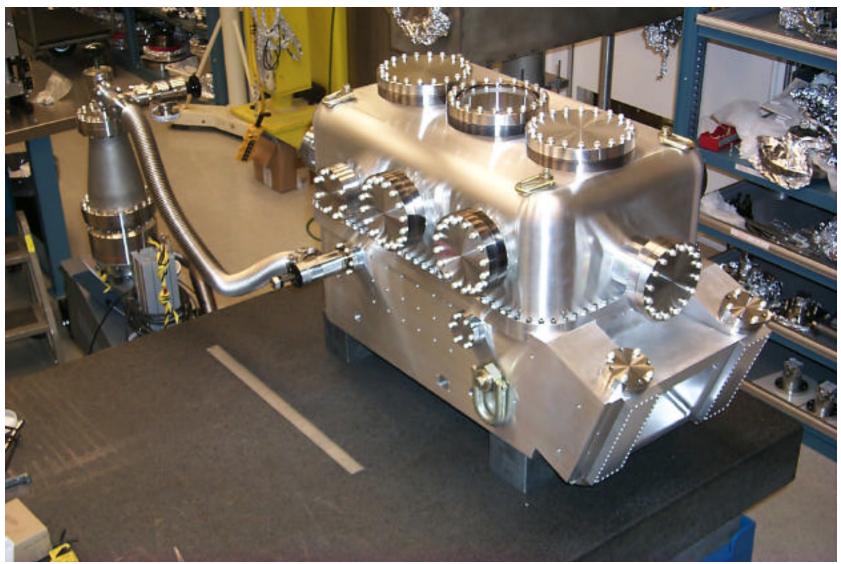
Plane mirror

New implementation of SX700 monochromator



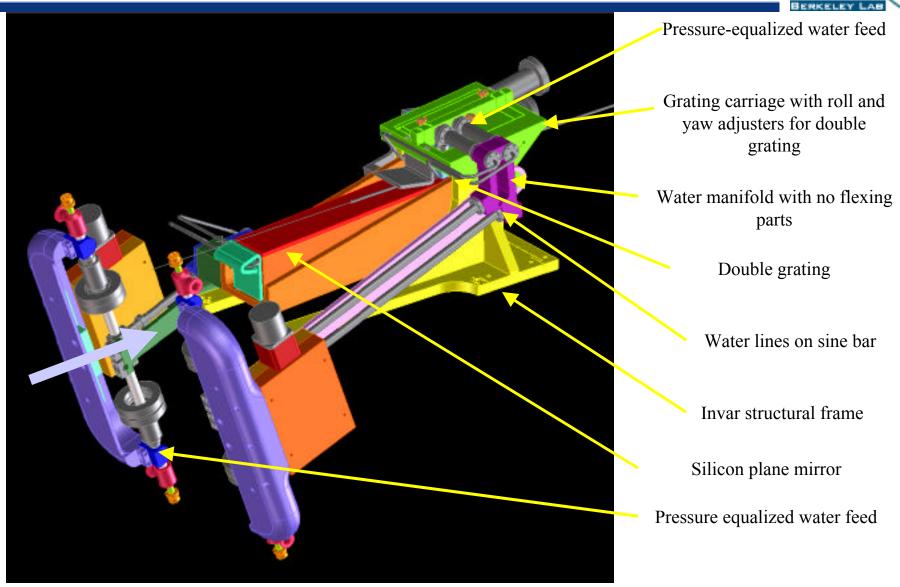
M. R. Howells, Advanced Light Source

Monochromator chamber, vacuum test Oct 2001



M. R. Howells, Advanced Light Source

monochromator scanning mechanism with integral cooling



M. R. Howells, Advanced Light Source